A geometric approach to passive target localization

S. Wong, R. Jassemi, D. Brookes, B. Kim Space and ISR Applications Section DRDC Ottawa, Canada

NATO 9-th Military Sensing Symposium
May 31-June 2, 2017
Quebec City, Canada

Canadä'

Drone surveillance can pose a threat

- A popular use of drones is in surveillance
- Some of the surveillance activities may present security concerns in a number of scenarios
- A situational awareness capability of the drone's presence is desirable

Tor

Drones are getting harder to detect

- Small size, low thermal signature, non-reflective radar materials
- Can be camouflaged and capable of hiding in a non-conspicuous location (e.g., perching on tree branches)
- These drones may present a challenge to EO, IR and radar detection and target localization

Radio-Frequency (RF) emission for detection and target localization

- As an alternative, RF signals emitted by the drones can be exploited for detection and localization
- RF: remote piloting (First Person View)
image transmission (HD/UHD videos and pictures)
- Time-Difference-Of-Arrival (TDOA) method can be used to process the detected RF signals and to find the target location
- The TDOA method is also capable of detecting and locating multiple moving targets simultaneously

Estimating target location by Time-Difference-Of-Arrival (TDOA)

- A geometric approach to solving the TDOA problem will be presented
- It offers a simpler and more intuitive way to solve the problem
- as an alternative to the conventional iterative numerical methods
- It may offer a means to provide real-time multi-target localization

The TDOA problem:

$$
\begin{aligned}
& d_{12}=c \tau_{12}=r_{1}-r_{2} \\
& d_{34}=c \tau_{34}=r_{3}-r_{4} \\
& d_{14}=c \tau_{14}=r_{1}-r_{4}
\end{aligned}
$$

$d_{i j}$ is the TDOA measurement (range difference) $\boldsymbol{\tau}_{i j}=\boldsymbol{\tau}_{\boldsymbol{i}}-\boldsymbol{\tau}_{j}$ is the TDOA; $\boldsymbol{d}_{i j}=\boldsymbol{c} \boldsymbol{\tau}_{i j}$
$\boldsymbol{r}_{\boldsymbol{i}}$ is the distance between the target and receiver \boldsymbol{i}
$r_{i}(x, y, z)=\sqrt{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}+\left(z-Z_{i}\right)^{2}}$

- Equations express the time difference of a signal arriving at a pair of receivers
- 4 receivers needed to obtain 3 independent TDOA measurements, $d_{i j}$
- 3 equations to compute the target location (x, y, z)

TDOA measurements $d_{i j}$

- The $\boldsymbol{d}_{i j}$ measurements are made by cross-correlating the signals detected by a pair of receivers
- d_{12} (receiver-pair S1-S2), d_{34} (S3-S4), d_{14} (S1-S4)
- The cross-correlation is obtained using a matched filter
$\chi\left(\tau_{i j}, f_{D, i j}\right)=\int \mu_{i}\left(t-t^{\prime}\left(\tau_{i}, f_{D, i}\right)\right) \mu_{j}^{*}\left(t-t^{\prime}\left(\tau_{j}, f_{D, j}\right)\right) d t$
$\tau_{i j}=\tau_{i}-\tau_{j} \quad$ (TDOA, time-difference-of-arrival)
$f_{D, i j}=f_{D, i}-f_{D, j} \quad$ (FDOA, frequency-difference-of-arrival)
The peak of the cross-correlation gives the $\boldsymbol{d}_{i j}\left(=c \tau_{i j}\right)$ value

Solving the TDOA Equations for the target location (x, y, z)

$$
\begin{aligned}
& d_{12}=r_{1}-r_{2} \\
& d_{34}=r_{3}-r_{4} \\
& d_{14}=r_{1}-r_{4} \\
& r_{i}=\sqrt{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}+\left(z-Z_{i}\right)^{2}} ; \quad i=1,2,3,4
\end{aligned}
$$

- A set of 3 non-linear equations
- Conventionally solved by iterative numerical methods (e.g., Least Square)
- Complex algorithms and require an initial value; bad guess means slower convergence, hence long computation time

Geometric approach to solving the TDOA equations

TDOA equations:

$$
\begin{aligned}
d_{i j} & =r_{i}-r_{j} \\
& =\sqrt{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}+\left(z-Z_{i}\right)^{2}}-\sqrt{\left(x-X_{j}\right)^{2}+\left(y-Y_{j}\right)^{2}+\left(z-Z_{j}\right)^{2}}
\end{aligned}
$$

- Using geometry, each TDOA equation can be solved individually.
- The solution is given by a hyperboloid,
$\frac{x^{\prime 2}}{\left(d_{i j}{ }^{2} / 4\right)}-\left(\frac{y^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}+\frac{z^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}\right)=1$
in a local coordinate system $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ (target)
where $\left(X_{1}^{\prime}, Y_{1}^{\prime}, Z_{1}^{\prime}\right)=(-d / 2,0,0)$,

$$
\begin{equation*}
\left(X_{2}^{\prime}, Y_{2}^{\prime}, Z_{2}^{\prime}\right)=(+d / 2,0,0) \tag{S1}
\end{equation*}
$$

$d_{i j}=$ TDOA measurement
$d=$ distance between the two receivers

TDOA solution = hyperboloid

$d_{i j}=r_{i}-r_{j} \quad$ TDOA equation
Solution:
$\frac{x^{\prime 2}}{\left(d_{i j}{ }^{2} / 4\right)}-\left(\frac{y^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}+\frac{z^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}\right)=1$

- Positive $d_{i j}$, right hand side surface $\left(r_{i}>r_{j}\right)$; negative $d_{i j}$, left hand side surface $\left(r_{i}<r_{j}\right)$.
- The target is somewhere on the surface of the hyperboloid

- Since the $+/-$ sign of $d_{i j}$ is known from the cross-correlator, and knowing the target is above ground, we can further narrow down the target's location.
- Do the same for the other 2 equations (i.e., receiver pairs S3-S4 and S1-S4)
- Hence obtain 3 hyperboloids as solutions for the 3 TDOA equations
- The 3 hyperboloids are then used to pinpoint the target's location.

Target localization from intersection of 3 hyperboloids

4 receivers in a "forward-looking" system configuration, with 3 receiver-pairs: S1-S2, S3-S4, S1-S4

3 intersecting hyperboloids

- Place the 3 hyperboloids in the same orientations as the receiver pairs in the system configuration
- The 3 hyperboloids will intersect with one another
- The target location is where the 3 hyperboloids intersect at one point (x, y, z)

- The intersection point is searched by scanning the intersecting hyperboloids layer by layer along z.
- This intersection point is found at z where the 3 intersecting hyperbolic curves form the smallest area (i.e., the sharpest point).

TDOA measurements $\left(d_{i j}\right)$ and target localization accuracy

- The positioning precision of the hyperboloid depends on the accuracy of $d_{i j}$ $\frac{x^{\prime 2}}{\left(d_{i j}{ }^{2} / 4\right)}-\left(\frac{y^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}+\frac{z^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}\right)=1$
- If TDOA measurements $\left(d_{i j}\right)$ have very small error, then target localization would be very accurate because the hyperboloids can be placed precisely.

	Target ground truths (m)		Computed target locations (m)			
Time (arb.unit)	$X_{T g}$	$Y_{t g}$				
1	-660.00	9998.50	1000.00	-660.00	9998.50	1000
2	-608.44	9328.48	1000.00	-608.44	9328.48	1000
3	-556.89	8658.46	1000.00	-556.89	8658.46	1000
4	-505.33	7988.44	1000.00	-505.33	7988.44	1000
5	-453.78	7318.42	1000.00	-453.78	7318.42	1000
6	-402.22	6648.40	1000.00	-402.22	6648.40	1000
7	-350.67	5978.38	1000.00	-350.67	5978.38	1000
8	-299.11	5308.36	1000.00	-299.11	5308.36	1000
9	-247.56	4638.34	1000.00	-247.56	4638.34	1000
10	-196.00	3968.32	1000.00	-196.00	3968.32	1000

TDOA measurements deviated from the error-free values

- Real TDOA measurements $\left(d_{i j}\right)$ have errors
- The errors are characterized by the Cramer-Rao Lower Bound variance $\boldsymbol{\sigma}^{2}$
- The standard deviation ("root mean square error"),

$$
\sigma \geq \frac{1}{\beta \sqrt{6.5 S N R}}
$$

- σ is dependent on signal bandwidth β and SNR
- Drone's emitting signal bandwidths:
- 1-3 MHz (telemetry data)
- 15 MHz (first person view)
- 20 MHz (UHD videos)
- $S N R=16(12 \mathrm{~dB})$ "detection threshold" of signals
- $\sigma \approx 10^{-8}-10^{-7} \mathrm{~s}$
- Error for $d_{i j}: \varepsilon=c \sigma \approx 3-30 \mathrm{~m}$ ($\mathrm{c}=$ speed of light)

TDOA measurements $\left(d_{i j}\right)$ with large deviations from the error-free values
 - $\varepsilon=c \sigma=30 \mathrm{~m}$

- σ parameters: $\beta=1 \mathrm{MHz}, \mathrm{SNR}=12 \mathrm{~dB}$

	Target ground truths (m)			Computed target locations (m)		
Time (arb.unit)	X_{Tg}	Y_{Tg}	Z_{Tg}	x	y	z
1	-660.00	9998.50	1000.00	-637.86	9837.28	400
2	-608.44	9328.48	1000.00	-624.27	9398.05	1700
3	-556.89	8658.46	1000.00	-543.75	8603.23	600
4	-505.33	7988.44	1000.00	-490.12	7938.34	800
5	-453.78	7318.42	1000.00	-441.23	7277.22	900
6	-402.22	6648.40	1000.00	-394.97	6562.24	900
7	-350.67	5978.38	1000.00	-344.75	5947.75	1200
8	-299.11	5308.36	1000.00	-288.28	5238.35	400
9	-247.56	4638.34	1000.00	-254.61	4595.83	1300
10	-196.00	3968.32	1000.00	-204.42	3923.01	1500

TDOA measurements $\left(d_{i j}\right)$ with a smaller error

- $\varepsilon=1.5 \mathrm{~m}$
- σ parameters: $\beta=20 \mathrm{MHz}, \mathrm{SNR}=12 \mathrm{~dB}$

	Target ground truths (m)		Computed target locations (m)			
Time (arb.unit)	X_{Tg}	Y_{Tg}		Z_{Tg}		x
1	-660.00	9998.50	1000.00	-658.36	9985.12	1000.00
2	-608.44	9328.48	1000.00	-607.37	9320.40	1000.00
3	-556.89	8658.46	1000.00	-556.09	8649.78	1000.00
4	-505.33	7988.44	1000.00	-504.86	7981.78	1000.00
5	-453.78	7318.42	1000.00	-452.51	7313.34	1000.00
6	-402.22	6648.40	1000.00	-401.72	6644.95	1000.00
7	-350.67	5978.38	1000.00	-349.92	5975.92	1000.00
8	-299.11	5308.36	1000.00	-298.84	5306.21	1000.00
9	-247.56	4638.34	1000.00	-247.41	4636.79	1000.00
10	-196.00	3968.32	1000.00	-195.37	3966.59	1000.00

Summarize briefly:

- The target localization accuracy is fundamentally linked to the signal's bandwidth and the SNR via the Cramer-Rao Lower Bound relation that characterizes the error in the TDOA measurements $\left(d_{i j}\right)$

Multi-targets detection and localization

- Drones are becoming cheaper and more accessible
- Use of multiple drones in surveillance will become more likely and may even be a norm
- An effective drone detection system must be able to detect and localize multiple targets simultaneously and in real-time in order to deal with the threats
- There has not been much work published on multi-target localization
- Applying the geometric method to multi-target localization

A 7-target scenario

Open circles:
TDOA measurements made by the receiver pairs
S1-S2
S3-S4
S1-S4
at 10 time instants
target altitude $=1000 \mathrm{~m}$

Multiple Target Localization Scenario

- Each receiver-pair detects 7 targets and generates 7 TDOA $d_{i j}$; i.e.,
- S1-S2:7 d_{12} values
- S3-S4:7 d_{34} values
- S1-S4: $7 d_{14}$ values
- 3 sets of 7 TDOA measurements $\left(d_{i j}\right)$ feeding the TDOA equations
- Need to search a n^{3} permutation ($7^{3}=343$ sets) of TDOA ($3-d_{i j}$) combinations to determine the locations of the 7 targets
- TDOA equations have to be solved 343 times; this requires a bit of computing time

TDOA equations:

$$
\begin{aligned}
d_{12} & =r_{1}-r_{2} \\
d_{34} & =r_{3}-r_{4} \\
d_{14} & =r_{1}-r_{4}
\end{aligned}
$$

- Target localization results for the case, $\varepsilon=1.5 \mathrm{~m}$ (TDOA measurement error)
- 5 target mis-locations occur
- They are due to combinations of d_{ij} values in the permutation that are not all from the same target, but have nonetheless generated the sharpest intersection point from the 3 intersecting hyperboloids
- Mis-locations are due to the TDOA measurements $\left(d_{i j}\right)$ having too large an error ε
$\mathbf{O}=$ target ground truth (x, y)
$\boldsymbol{*}=$ computed location (x, y)

- Reducing TDOA error to $\varepsilon=\underline{0.15 \mathrm{~m}}$ (from 1.5)

■ $\beta=20 \mathrm{MHz}, \mathrm{SNR}=\underline{32 \mathrm{~dB}}$

$\mathbf{0}$ = ground truth
= computed target location (x, y)
computed target altitude (z)

target altitude (m)													
	T\#5	$\mathrm{T} \# 3$	$\mathrm{~T} \# 7$	$\mathrm{~T} \# 1$	$\mathrm{~T} \# 6$	$\mathrm{~T} \# 2$	$\mathrm{~T} \# 4$						
time													
1	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
2	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
3	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
4	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
5	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
6	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
7	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
8	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
9	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						
10	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00						

actual target altitude $=1000 \mathrm{~m}$

For multi-target localization, the TDOA error ε should be kept small to minimize mis-locations

Geometric approach to achieve real-time multi-target localization?

- The geometry-based solution is not real-time
- Most of the computing time is spent on the hyperboloids

n (no. of targets detected)	t (non-coplanar receiver configuration)
1	18.6 s
3	56.1
7	147.1
7	236.0
10	per time instant of sampling

- Real-time via the geometric method: each of the 3 TDOA Equations is solved individually (i.e., computing a hyperboloid)

$$
\begin{aligned}
& d_{12}=r_{1}-r_{2} \rightarrow \text { hyperboloid1 } \\
& d_{34}=r_{3}-r_{4} \rightarrow \text { hyperboloid2 } \\
& d_{14}=r_{1}-r_{4} \rightarrow \text { hyperboloid3 }
\end{aligned}
$$

- The hyperboloids can be pre-computed for a range of different $d_{i j}$ values for each of the 3 TDOA equations and stored as look-up tables to save considerable computing time

Approach to real-time multi-target processing

$$
\begin{aligned}
& d_{i j}=r_{i}-r_{j} \\
& \frac{x^{\prime 2}}{\left(d_{i j}{ }^{2} / 4\right)}-\left(\frac{y^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}+\frac{z^{\prime 2}}{\left(d^{2} / 4\right)-\left(d_{i j}{ }^{2} / 4\right)}\right)=1
\end{aligned}
$$

Each single TDOA equation has
a hyperboloid as solution

- d is the known separation distance between a pair of receivers
- $-d<d_{i j}<d$
- For a given TDOA error ε, there are $(2 d / \varepsilon+1)$ possible $d_{i j}$ values
- $(2 d / \varepsilon+1)$ hyperboloids can be pre-computed and stored as look-up tables

Number of look-up tables for the hyperboloids

Assume FPV transmitter power $=500 \mathrm{~mW}$

TDOA error: $\varepsilon=1.5 \mathrm{~m}$
(σ parameters: $\beta=20 \mathrm{MHz}, \mathrm{SNR}=12 \mathrm{~dB}$)
$+$
detection system size with d as shown on the left
\# of hyperboloids $=(2 d / \varepsilon+1)$
13334 (S1-S4)
6417 (S1-S2)
6417 (S3-S4)
=
26168 (total)
hyperboloids to be pre-computed and stored as look-up tables; each corresponds to a specific $d_{i j}$ value.
This total is applicable to any \boldsymbol{n}-target scenarios, as long as the correlator can resolve 2 targets to within ε.

How multi-target localization in real-time could be achieved

- Use look-up tables
- Large data storage capacity and fast data retrieval algorithms make this viable
- Apply parallel computing algorithms
- The n^{3} permutation is highly parallel in computing structure
- Using both look-up tables and multi-core parallel computing, real-time (~ 1s) multi-target localization may be realizable

Thank you

Computing time: coplanar vs non-coplanar

Table 5.10: Computation time consumed in target localization processing for different number of targets detected using sequential processing.

n (no. of targets detected)	t (coplanar configuration)	t (non-coplanar configuration)
1	0.4 s	18.6 s
3	2.8	56.1
7	30.8	147.1
10	89.5	236.0

Parallel structure in permutation

	Target \#1	Target \#2
S1-S2	A	D
S3-S4	B	E
S1-S4	C	F

permutations:
ABC
ABF
AEC
AEF
DBC
DBF
DEC
DEF

Numerical method and closed-form solutions need to solve 3 TDOA equations simultaneously

$$
\begin{aligned}
& d_{12}=c \tau_{12}=r_{1}-r_{2} \\
& d_{34}=c \tau_{34}=r_{3}-r_{4} \\
& d_{14}=c \tau_{14}=r_{1}-r_{4}
\end{aligned}
$$

Pre-computing needs combinations of $3 \mathrm{~d}_{\mathrm{ij}}$ values as one single set. The no. of permutated sets required $6417 \times 6417 \times 13334 \approx 5 \times 10^{11}$

Coplanar receiver configuration

- 4 receivers are located at the same $z=0$ level
. $\beta=1 \mathrm{MHz}, \mathrm{SNR}=16, \varepsilon=30 \mathrm{~m}$
Table 4.4

	Target ground truth (m)			Computed target location (m)		
Time (arb.unit)	$X_{T g}$	$Y_{T g}$	$Z_{T g}$	x	y	z
1	-660.00	9998.50	1000.00	-649.17	9889.12	0
2	-608.44	9328.48	1000.00	-700.88	9881.41	3660.00
3	-556.89	8658.46	1000.00	-803.17	10144.20	6610.00
4	-505.33	7988.44	1000.00	-490.19	7932.89	0
5	-453.78	7318.42	1000.00	-438.48	7262.07	0
6	-402.22	6648.40	1000.00	-391.61	6549.75	0
7	-350.67	5978.38	1000.00	-485.88	6316.99	5650.00
8	-299.11	5308.36	1000.00	-292.53	5252.69	0
9	-247.56	4638.34	1000.00	-242.15	4595.37	0
10	-196.00	3968.32	1000.00	-187.34	3950.14	0

Coplanar receiver configuration

- 4 receivers are located at the same $z=0$ level
- $\beta=20 \mathrm{MHz}, \mathrm{SNR}=16, \varepsilon=1.5 \mathrm{~m}$

Table 4.5

	Target ground truth (m)			Computed target location (m)		
Time (arb.unit)\}	$X_{T g}$	$Y_{T g}$	$Z_{T g}$	x	y	z
1	-660.00	9998.50	1000.00	-659.84	9994.90	1080.00
2	-608.44	9328.48	1000.00	-609.10	9332.24	1130.00
3	-556.89	8658.46	1000.00	-561.09	8678.75	1270.00
4	-505.33	7988.44	1000.00	-504.69	7981.44	1020.00
5	-453.78	7318.42	1000.00	-461.56	7355.42	1520.00
6	-402.22	6648.40	1000.00	-403.99	6653.53	1150.00
7	-350.67	5978.38	1000.00	-353.01	5984.02	1250.00
8	-299.11	5308.36	1000.00	-293.74	5301.20	0
9	-247.56	4638.34	1000.00	-258.45	4619.69	1900.00
10	-196.00	3968.32	1000.00	-193.72	3976.66	720.00

