

A geometric approach to passive target localization

S. Wong, R. Jassemi, D. Brookes, B. Kim Space and ISR Applications Section DRDC Ottawa, Canada

NATO 9-th Military Sensing Symposium May 31-June 2, 2017 Quebec City, Canada

Drone surveillance can pose a threat

- A popular use of drones is in surveillance
- Some of the surveillance activities may present security concerns in a number of scenarios
- A situational awareness capability of the drone's presence is desirable

CIRD

70

Drones are getting harder to detect

- Small size, low thermal signature, non-reflective radar materials
- Can be camouflaged and capable of hiding in a non-conspicuous location (e.g., perching on tree branches)
- These drones may present a challenge to EO, IR and radar detection and target localization

Radio-Frequency (RF) emission for detection and target localization

- As an alternative, RF signals emitted by the drones can be exploited for detection and localization
- RF: remote piloting (First Person View)

image transmission (HD/UHD videos and pictures)

- Time-Difference-Of-Arrival (TDOA) method can be used to process the detected RF signals and to find the target location
- The TDOA method is also capable of detecting and locating multiple moving targets simultaneously

Estimating target location by <u>Time-Difference-Of-Arrival</u> (TDOA)

- A geometric approach to solving the TDOA problem will be presented
- It offers a simpler and more intuitive way to solve the problem
 - as an alternative to the conventional iterative numerical methods
- It may offer a means to provide real-time multi-target localization

The TDOA problem:

$$d_{12} = c\tau_{12} = r_1 - r_2$$
$$d_{34} = c\tau_{34} = r_3 - r_4$$
$$d_{14} = c\tau_{14} = r_1 - r_4$$

 d_{ij} is the **TDOA** measurement (range difference) $\tau_{ij} = \tau_i - \tau_j$ is the **TDOA**; $d_{ij} = c \tau_{ij}$

r_i is the distance between the target and receiver **i**

$$r_i(x, y, z) = \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2}$$

- Equations express the time difference of a signal arriving at a pair of receivers
- 4 receivers needed to obtain 3 independent TDOA measurements, d_{ii}
- 3 equations to compute the target location (x,y,z)

DRDCIRDDC

TDOA measurements *d_{ij}*

- The d_{ij} measurements are made by cross-correlating the signals detected by a pair of receivers
 - *d*₁₂ (receiver-pair S1-S2), *d*₃₄ (S3-S4), *d*₁₄ (S1-S4)
- The cross-correlation is obtained using a matched filter

$$\chi(\tau_{ij}, f_{D,ij}) = \int \mu_i(t - t'(\tau_i, f_{D,i})) \mu_j^*(t - t'(\tau_j, f_{D,j})) dt$$

- $\tau_{ij} = \tau_i \tau_j$ (TDOA, time-difference-of-arrival)
- $f_{D,ij} = f_{D,i} f_{D,j}$ (FDOA, frequency-difference-of-arrival)

The peak of the cross-correlation gives the d_{ij} (= $c\tau_{ij}$) value

Solving the TDOA Equations for the target location (x,y,z)

$$d_{12} = r_1 - r_2$$

$$d_{34} = r_3 - r_4$$

$$d_{14} = r_1 - r_4$$

$$r_i = \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2}; \quad i = 1, 2, 3, 4$$

- A set of 3 non-linear equations
- Conventionally solved by iterative numerical methods (e.g., Least Square)
- Complex algorithms and require an initial value; bad guess means slower convergence, hence long computation time

1

Geometric approach to solving the TDOA equations

TDOA equations:

 $d_{ij} = r_i - r_j$ = $\sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2} - \sqrt{(x - X_j)^2 + (y - Y_j)^2 + (z - Z_j)^2}$

- Using geometry, each TDOA equation can be solved individually.
- The solution is given by a hyperboloid,

$$\frac{x'^{2}}{(d_{ij}^{2}/4)} - \left(\frac{y'^{2}}{(d^{2}/4) - (d_{ij}^{2}/4)} + \frac{z'^{2}}{(d^{2}/4) - (d_{ij}^{2}/4)}\right) = 1$$

in a local coordinate system (x', y', z') (target) where $(X_1', Y_1', Z_1') = (-d/2, 0, 0)$, (S1) $(X_2', Y_2', Z_2') = (+d/2, 0, 0)$, (S2)

 d_{ij} = TDOA measurement

d = distance between the two receivers

TDOA solution = hyperboloid

 $d_{ij} = r_i - r_j$ TDOA equation

Solution:

$$\frac{x'^{2}}{(d_{ij}^{2}/4)} - \left(\frac{y'^{2}}{(d^{2}/4) - (d_{ij}^{2}/4)} + \frac{z'^{2}}{(d^{2}/4) - (d_{ij}^{2}/4)}\right) = 1$$

- Positive d_{ij}, right hand side surface (r_i > r_j);
 negative d_{ij}, left hand side surface (r_i < r_j).
- The target is somewhere on the surface of the hyperboloid

- Since the +/- sign of d_{ij} is known from the cross-correlator, and knowing the target is above ground, we can further narrow down the target's location.
- Do the same for the other 2 equations (i.e., receiver pairs S3-S4 and S1-S4)
- Hence obtain 3 hyperboloids as solutions for the 3 TDOA equations
- The 3 hyperboloids are then used to pinpoint the target's location.

Target localization from intersection of 3 hyperboloids

3 intersecting hyperboloids

4 receivers in a "forward-looking" system configuration, with 3 receiver-pairs: S1-S2, S3-S4, S1-S4

- Place the 3 hyperboloids in the same orientations as the receiver pairs in the system configuration
- The 3 hyperboloids will intersect with one another
- The target location is where the 3 hyperboloids intersect at one point (*x,y,z*)

DRDCIRDDC

- The intersection point is searched by scanning the intersecting hyperboloids layer by layer along z.
- This intersection point is found at *z* where the 3 intersecting hyperbolic curves form the smallest area (i.e., the sharpest point).

IRDDC

TDOA measurements (d_{ij}) and target localization accuracy

- The positioning precision of the hyperboloid depends on the accuracy of d_{ij} $\frac{x'^2}{(d_{ij}^2/4)} - \left(\frac{y'^2}{(d^2/4) - (d_{ij}^2/4)} + \frac{z'^2}{(d^2/4) - (d_{ij}^2/4)}\right) = 1$
- If TDOA measurements (d_{ij}) have very small error, then target localization would be very accurate because the hyperboloids can be placed precisely.

		Target ground truths (m)			Computed target locations (m)		
······	Time (arb.unit)	X_{Tg}	Y_{tg}	Z_{Tg}	x	У	z
P C C C C C C C C C C C C C C C C C C C	1	-660.00	9998.50	1000.00	-660.00	9998.50	1000
	2	-608.44	9328.48	1000.00	-608.44	9328.48	1000
P	3	-556.89	8658.46	1000.00	-556.89	8658.46	1000
	4	-505.33	7988.44	1000.00	-505.33	7988.44	1000
	5	-453.78	7318.42	1000.00	-453.78	7318.42	1000
	6	-402.22	6648.40	1000.00	-402.22	6648.40	1000
S4	7	-350.67	5978.38	1000.00	-350.67	5978.38	1000
	8	-299.11	5308.36	1000.00	-299.11	5308.36	1000
C2 C3	9	-247.56	4638.34	1000.00	-247.56	4638.34	1000
	10	-196.00	3968.32	1000.00	-196.00	3968.32	1000
X (KM)							

Using error-free d_{ij} measurements

TDOA measurements deviated from the error-free values

- **Real TDOA measurements** (d_{ij}) have errors
- \blacksquare The errors are characterized by the Cramer-Rao Lower Bound variance σ^2
- The standard deviation ("root mean square error"),
- $\sigma \ge \frac{1}{\beta \sqrt{6.5 SNR}}$

- σ is dependent on signal bandwidth β and SNR
- Drone's emitting signal bandwidths:
 - 1-3 MHz (telemetry data)
 - 15 MHz (first person view)
 - 20 MHz (UHD videos)
- SNR = 16 (12 dB) "detection threshold" of signals
- **σ** ≈ 10⁻⁸ − 10⁻⁷ s

• Error for d_{ij} : $\varepsilon = c \sigma \approx 3 - 30 \text{ m}$ (c = speed of light)

TDOA measurements (d_{ij}) with large deviations from the error-free values

■ ε = cσ = 30 m

• σ parameters: $\beta = 1$ MHz, SNR = 12 dB

	Target ground t	ruths (m)		Computed target locations (m)		
Time (arb.unit)	X _{Tg}	Y _{Tg}	Z _{Tg}	x	у	Z.
1	-660.00	9998.50	1000.00	-637.86	9837.28	400
2	-608.44	9328.48	1000.00	-624.27	9398.05	1700
3	-556.89	8658.46	1000.00	-543.75	8603.23	600
4	-505.33	7988.44	1000.00	-490.12	7938.34	800
5	-453.78	7318.42	1000.00	-441.23	7277.22	900
6	-402.22	6648.40	1000.00	-394.97	6562.24	900
7	-350.67	5978.38	1000.00	-344.75	5947.75	1200
8	-299.11	5308.36	1000.00	-288.28	5238.35	400
9	-247.56	4638.34	1000.00	-254.61	4595.83	1300
10	-196.00	3968.32	1000.00	-204.42	3923.01	1500

TDOA measurements (d_{ij}) with a smaller error

∎ ε = 1.5 m

• σ parameters: β = 20 MHz, SNR = 12 dB

	Target ground t	truths (m)		Computed target locations (m)		
Time (arb.unit)	X _{Tg}	Y _{Tg}	Z _{Tg}	X	у	z
1	-660.00	9998.50	1000.00	-658.36	9985.12	1000.00
2	-608.44	9328.48	1000.00	-607.37	9320.40	1000.00
3	-556.89	8658.46	1000.00	-556.09	8649.78	1000.00
4	-505.33	7988.44	1000.00	-504.86	7981.78	1000.00
5	-453.78	7318.42	1000.00	-452.51	7313.34	1000.00
6	-402.22	6648.40	1000.00	-401.72	6644.95	1000.00
7	-350.67	5978.38	1000.00	-349.92	5975.92	1000.00
8	-299.11	5308.36	1000.00	-298.84	5306.21	1000.00
9	-247.56	4638.34	1000.00	-247.41	4636.79	1000.00
10	-196.00	3968.32	1000.00	-195.37	3966.59	1000.00

Summarize briefly:

The target localization accuracy is fundamentally linked to the signal's bandwidth and the SNR via the Cramer-Rao Lower Bound relation that characterizes the error in the TDOA measurements (d_{ii})

Multi-targets detection and localization

- Drones are becoming cheaper and more accessible
- Use of multiple drones in surveillance will become more likely and may even be a norm
- An effective drone detection system must be able to detect and localize multiple targets simultaneously and in real-time in order to deal with the threats
- There has not been much work published on multi-target localization
 Applying the geometric method to multi-target localization

A 7-target scenario

Open circles : TDOA measurements made by the receiver pairs S1-S2 S3-S4 S1-S4

at 10 time instants

target altitude = 1000 m

IRDDC

Multiple Target Localization Scenario

• Each receiver-pair detects 7 targets and generates 7 TDOA d_{ii} ; i.e.,

- S1-S2:7 *d*₁₂ values
- S3-S4:7 *d*₃₄ values
- S1-S4:7 *d*₁₄ values
- 3 sets of 7 TDOA measurements (*d_{ij}*) feeding the TDOA equations
- Need to search a n³ permutation (7³ =343 sets) of TDOA (3-d_{ij}) combinations to determine the locations of the 7 targets
- TDOA equations have to be solved 343 times; this requires a bit of computing time

TDOA equations:

$$a_{12} = r_1 - r_2$$
$$a_{34} = r_3 - r_4$$

 $d_{14} = r_1 - r_4$

- Target localization results for the case,
 - ε = 1.5 m (TDOA measurement error)
- 5 target mis-locations occur
- They are due to combinations of d_{ij} values in the permutation that are not all from the same target, but have nonetheless generated the sharpest intersection point from the 3 intersecting hyperboloids
- Mis-locations are due to the TDOA measurements (d_{ij}) having too large an error ε

= target ground truth (x,y)
 = computed location (x,y)

IRDDC

Reducing TDOA error to ε = 0.15 m (from 1.5) β = 20 MHz, SNR = 32 dB

= ground truth
 = computed target location (x,y)
 DRDC I RDDC

	target altitu	ude (m)					
	T#5	T#3	T#7	T#1	T#6	T#2	T#4
time							
1	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
2	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
3	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
4	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
5	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
6	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
7	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
8	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
9	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
10	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00

actual target altitude = 1000 m

For multi-target localization, the TDOA error ε should be kept small to minimize mis-locations

computed target altitude (z)

Geometric approach to achieve real-time multi-target localization?

- The geometry-based solution is not real-time
- Most of the computing time is spent on the hyperboloids

n (no. of targets detected)	t (non-coplanar receiver configuration)
1	18.6s
3	56.1
7	147.1
10	236.0

per time instant of sampling

 Real-time via the geometric method: each of the 3 TDOA Equations is solved individually (i.e., computing a hyperboloid)

> $d_{12} = r_1 - r_2 \implies \text{hyperboloid1}$ $d_{34} = r_3 - r_4 \implies \text{hyperboloid2}$ $d_{14} = r_1 - r_4 \implies \text{hyperboloid3}$

 The hyperboloids can be pre-computed for a range of different d_{ij} values for each of the 3 TDOA equations and stored as look-up tables to save considerable computing time

Approach to real-time multi-target processing

$$\frac{d_{ij} = r_i - r_j}{\frac{x'^2}{(d_{ij}^2/4)} - \left(\frac{y'^2}{(d^2/4) - (d_{ij}^2/4)} + \frac{z'^2}{(d^2/4) - (d_{ij}^2/4)}\right) = 1$$

Each single TDOA equation has a hyperboloid as solution

d is the known separation distance between a pair of receivers
 - d < d_{ij} < *d*

- For a given TDOA error ε , there are $(2d/\varepsilon + 1)$ possible d_{ij} values
- $(2d/\epsilon + 1)$ hyperboloids can be pre-computed and stored as look-up tables

Number of look-up tables for the hyperboloids

Assume FPV transmitter power = 500 mW

TDOA error: ε = 1.5m (σ parameters: β =20 MHz, SNR=12dB) +

detection system size with d as shown on the left

```
# of hyperboloids = (2d/ε+1)
13334 (S1-S4)
6417 (S1-S2)
6417 (S3-S4)
=
```

26168 (total)

hyperboloids to be pre-computed and stored as look-up tables; each corresponds to a specific d_{ij} value.

This total is applicable to any n-target scenarios, as long as the correlator can resolve 2 targets to within ε .

How multi-target localization in real-time could be achieved

Use look-up tables

- Large data storage capacity and fast data retrieval algorithms make this viable
- Apply parallel computing algorithms
 - The n³ permutation is highly parallel in computing structure
- Using both look-up tables and multi-core parallel computing, real-time (~ 1s) multi-target localization may be realizable

Thank you

Computing time: coplanar vs non-coplanar

Table 5.10: Computation time consumed in target localization processing for different number of targets detected using sequential processing.

n (no. of targets detected)	t (coplanar configuration)	t (non-coplanar configuration)
1	0.4s	18.6s
3	2.8	56.1
7	30.8	147.1
10	89.5	236.0

Parallel structure in permutation

	Target #1	Target #2
S1-S2	А	D
S3-S4	В	E
S1-S4	С	F

permutations:

ABC

- ABF
- AEC
- AEF
- DBC
- DBF
- DEC
- DEF

Numerical method and closed-form solutions need to solve 3 TDOA equations simultaneously

$$d_{12} = c\tau_{12} = r_1 - r_2$$

$$d_{34} = c\tau_{34} = r_3 - r_4$$

$$d_{14} = c\tau_{14} = r_1 - r_4$$

Pre-computing needs combinations of 3 d_{ij} values as one single set. The no. of permutated sets required 6417x6417x13334≈5x10¹¹

Coplanar receiver configuration

• 4 receivers are located at the same *z* = 0 level

■ β = 1 MHz, SNR = 16, ε = 30 m

Table 4.4

	Target ground truth (m)			Computed target location (m)		
Time (arb.unit)	X _{Tg}	Y _{Tg}	Z_{Tg}	x	У	Z
1	-660.00	9998.50	1000.00	-649.17	9889.12	0
2	-608.44	9328.48	1000.00	-700.88	9881.41	3660.00
3	-556.89	8658.46	1000.00	-803.17	10144.20	6610.00
4	-505.33	7988.44	1000.00	-490.19	7932.89	0
5	-453.78	7318.42	1000.00	-438.48	7262.07	0
6	-402.22	6648.40	1000.00	-391.61	6549.75	0
7	-350.67	5978.38	1000.00	-485.88	6316.99	5650.00
8	-299.11	5308.36	1000.00	-292.53	5252.69	0
9	-247.56	4638.34	1000.00	-242.15	4595.37	0
10	-196.00	3968.32	1000.00	-187.34	3950.14	0

Coplanar receiver configuration

• 4 receivers are located at the same *z* = 0 level

■ β = 20 MHz, SNR = 16, ε = 1.5 m

Table 4.5

	Target ground truth (m)			Computed target location (m)		
Time (arb.unit)	X_{Tg}	Y_{Tg}	Z_{Tg}	x	у	Z
1	-660.00	9998.50	1000.00	-659.84	9994.90	1080.00
2	-608.44	9328.48	1000.00	-609.10	9332.24	1130.00
3	-556.89	8658.46	1000.00	-561.09	8678.75	1270.00
4	-505.33	7988.44	1000.00	-504.69	7981.44	1020.00
5	-453.78	7318.42	1000.00	-461.56	7355.42	1520.00
6	-402.22	6648.40	1000.00	-403.99	6653.53	1150.00
7	-350.67	5978.38	1000.00	-353.01	5984.02	1250.00
8	-299.11	5308.36	1000.00	-293.74	5301.20	0
9	-247.56	4638.34	1000.00	-258.45	4619.69	1900.00
10	-196.00	3968.32	1000.00	-193.72	3976.66	720.00